Econ712 - Handout 2

1 Moderately timed review

1.1 Modeling

- Environment: Agents; Preferences/Payoffs; Technology; Information
- Equilibrium

1.2 Class material

- Consumption labour decision
- Planner's allocation vs competitive equilibrium allocation

2 Dynamics and Difference equations

- Macro deals with problems that are dynamic in nature
- In discrete time, equilibrium characterized by difference equations
- Solution/characterization: Linearization; Phase Diagrams; Numerical

2.1 Some bivariate linear difference equation

Consider the following system

$$\Omega_{t+1} = (1-\delta)\Omega_t + L_t^c$$
$$L_{t+1}^c = (1+\delta+\beta)L_t^c + \gamma\Omega_t - \theta_0$$

Here $\delta \in (0,1), \beta \in (0,1), \gamma \geq 0$. Illustrate the system dynamics using a phase diagram with Ω_t on the horizontal axis and L_t^c on the vertical axis. Analyze the regions where $\Delta \Omega_t > 0, \Delta \Omega_t = 0, \Delta \Omega_t < 0$, and do the same for L_t^c . Is there a steady state $(\bar{\Omega}, \bar{L}^c)$ and saddle path?

2.2 Finite consumption - saving

Consider an agent that lives for T periods with time seperable utility. She ranks consumption each period according to u(C), and discounts future consumption geometrically at rate β . Each period she is endowed with w > 0 units of consumption good. She has access to a perfect storage technology, whereby 1 unit of good saved today will give her 1 unit of good tomorrow. Assume u(C) is strictly increasing, strictly concave, and continuously differentiable, with $\lim_{c\to 0} u'(c) = \infty$ and $\lim_{c\to\infty} u'(c) = 0$. In period 0, the agent manages to find treasures valued at S.

- 1. Derive the difference equations that characterize the agent's consumption and savings decisions.
- 2. Let T = 23, w = 1, $u(c) = \log(c)$, $\beta = 0.99$, S = 34. Solve numerically for the optimal consumption and savings decisions.

3 Setting up a model

State the Consumer Problem and define the Competitive Equilibrium for the following:

Consider an overlapping generations economy of 3-period-lived agents. Denote these periods as *young*, *mid*, *old*. At each date $t \ge 1$, a measure 1 of new young agents enter the economy, each endowed with w_1 units of the consumption good when young, w_2 units when mid, and w_3 units when old. The consumption good is non-storable. Consumption preference is described by $\ln c_t^t + \ln c_{t+1}^t + \ln c_{t+2}^t$. At time t = 1, there is an unit measure of old agents, each endowed with w_3 units of the consumption good; and an unit measure of mid agents, each endowed with w_2 units of the consumption good at t = 1 and w_3 units at t = 2. Additionally, each initial old agent is endowed with 1 unit of fiat currency.