Econ712 - Handout 2 Sol

# 1 Moderately timed review

### 1.1 Modeling

- Environment: Agents; Preferences/Payoffs; Technology; Information
- Equilibrium

#### 1.2 Class material

- Consumption labour decision
- Planner's allocation vs competitive equilibrium allocation

# 2 Dynamics and Difference equations

- Macro deals with problems that are dynamic in nature
- In discrete time, equilibrium characterized by difference equations
- Solution/characterization: Linearization; Phase Diagrams; Numerical

### 2.1 Some bivariate linear difference equation

Consider the following system

$$\Omega_{t+1} = (1-\delta)\Omega_t + L_t^c$$
$$L_{t+1}^c = (1+\delta+\beta)L_t^c + \gamma\Omega_t - \theta_0$$

Here  $\delta \in (0,1), \beta \in (0,1), \gamma \geq 0$ . Illustrate the system dynamics using a phase diagram with  $\Omega_t$  on the horizontal axis and  $L_t^c$  on the vertical axis. Analyze the regions where  $\Delta \Omega_t > 0, \Delta \Omega_t = 0, \Delta \Omega_t < 0$ , and do the same for  $L_t^c$ . Is there a steady state  $(\bar{\Omega}, \bar{L}^c)$  and saddle path?

- It is always important to note which are state variables and which are choice variables. While not given in the problem, let's assume  $\Omega_t$  is the state and  $L_t^c$  is the choice.
- To construct phase diagram for this system, we need to find the equations for two phaselines,

$$\Delta\Omega_t = \Omega_{t+1} - \Omega_t = 0 \tag{1}$$

$$\Delta L_t^c = L_{t+1}^c - L_t^c = 0 \tag{2}$$

Above the  $\Delta \Omega_t = 0$  line,  $\Omega_t$  will increase and below the  $\Delta \Omega_t = 0$  line it will decrease. The same logic works for the dynamics of  $L_t^c$ .

• Using equations (1) and (2), we can determine the direction of the vector field and the sense of the steady state.

$$\begin{split} \Delta \Omega_t &\geq 0 \iff L_t^c \geq \delta \Omega_t \\ \Delta L_t^c &\geq 0 \iff L_t^c \geq -\frac{\gamma}{\delta+\beta} \Omega_t + \frac{\theta_0}{\delta+\beta} \end{split}$$

• To determine whether there is a saddle path, we need to consider the stability of the system. Quite a bit of algebra, let's assume it exists. (We know that since  $\gamma > 0$ , there exists a path that leads to the steady state. The question is whether that path is unique.)

Figure 2 shows the phase diagram for the system of  $(\Omega_t, L_t^c)$  and a saddle path, assuming one exists



Figure 1: Phase Diagram  $(\Omega_t, L_t^c)$ 

### 2.2 Finite consumption - saving

Consider an agent that lives for T periods with time seperable utility. She ranks consumption each period according to u(C), and discounts future consumption geometrically at rate  $\beta$ . Each period she is endowed with w > 0 units of consumption good. She has access to a perfect storage technology, whereby 1 unit of good saved today will give her 1 unit of good tomorrow. Assume u(C) is strictly increasing, strictly concave, and continuously differentiable, with  $\lim_{c\to 0} u'(c) = \infty$  and  $\lim_{c\to\infty} u'(c) = 0$ . In period 0, the agent manages to find treasures valued at S.

- 1. Derive the difference equations that characterize the agent's consumption and savings decisions.
  - (a) Her problem:  $\max_{\{c_t, s_{t+1}\}_{t=0}^{T-1}} \sum_{t=0}^{T-1} \beta^t u(c_t)$  subject to  $c_t + s_{t+1} = w + s_t; s_0 = S; c_t, s_{t+1} \ge 0$

(b) Clearly  $c_t > 0$ . Let  $\mu_t$  be the multiplier on  $s_{t+1} \ge 0$ . FOCs:

$$\beta^{t}u'(c_{t}) = \lambda_{t}$$
$$\lambda_{t} - \mu_{t} = \lambda_{t+1}$$
$$\mu_{t}s_{t+1} \ge 0$$
$$c_{t} + s_{t+1} = w + s_{t}$$

This is a system of 4 difference equations and inequalities in 4 unknowns  $c, s, \lambda, \mu$ . Boundary conditions are  $s_0 = S, \lambda_T = 0$ 

- 2. Let T = 23, w = 1,  $u(c) = \log(c)$ ,  $\beta = 0.99$ , S = 34. Solve numerically for the optimal consumption and savings decisions.
  - (a) Since  $c_t \ll \infty \forall t, \lambda_{T-1} > 0$ .  $\lambda_T = 0$  then implies that  $\mu_{T-1} > 0$  i.e.  $s_T = 0$
  - (b) Note that  $\lambda_t \geq \lambda_{t+1} \iff u'(c_t) \geq \beta u'(c_{t+1})$ , with equality if  $s_{t+1} > 0$
  - (c) We will solve a more general problem of finding the optimal consumption and savings policy  $c_t^*(s), s_{t+1}^*(s)$  for all periods, given an arbitrary start of period savings:
    - i. For period T 1,  $s_T^*(s) = 0$  and  $c_{T-1}^*(s) = w + s$
    - ii. For period T 2,  $s_{T-1}^*(s)$  solves  $u'(w + s s_{T-1}^*) \ge u'(c_{T-1}^*(s_{T-1}^*))$ . That is, first solve the equality. If the resulting  $s_{T-1}^* < 0$ , set it to 0. Then  $c_{T-2}^*(s) = w + s s_{T-1}^*(s)$
    - iii. Iterate backwards:  $s_{t+1}^*(s)$  solves  $u'(w+s-s_{t+1}^*) \ge u'(c_{t+1}^*(s_t^*))$  and  $c_t^*(s) = w+s-s_{t+1}^*(s)$
    - iv. Given the policy functions, for our specific starting point  $s_0 = 34$ , solve forwards. That is,  $s_1 = s_1^*(34), s_2 = s_2^*(s_1)$ , and so on
  - (d) A small note on the shooting method:
    - i. If we had  $u'(c_t) = \beta u'(c_{t+1}) \forall t$ , we could start with a guess of  $s_{T-1}$ , which then imply a  $s_{T-2}$  by  $u'(w + s_{T-2} s_{T-1}) = u'(w + s_{T-1} s_T)$ . Continuing in this manner, we would obtain a sequence down to  $s_0$ . If  $s_0 = S$ , then our guess is correct and we have found the optimal sequence. If not, we change our guess of  $s_{T-1}$
    - ii. The presence of the inequality  $u'(c_t) \ge \beta u'(c_{t+1})$  complicates this approach a bit

# 3 Setting up a model

State the Consumer Problem and define the Competitive Equilibrium for the following:

Consider an overlapping generations economy of 3-period-lived agents. Denote these periods as *young*, *mid*, *old*. At each date  $t \ge 1$ , a measure 1 of new young agents enter the economy, each endowed with  $w_1$  units of the consumption good when young,  $w_2$  units when mid, and  $w_3$  units when old. The consumption good is non-storable. Consumption preference is described by  $\ln c_t^t + \ln c_{t+1}^t + \ln c_{t+2}^t$ . At time t = 1, there is an unit measure of old agents, each endowed with  $w_3$  units of the consumption good at t = 1 and  $w_3$  units at t = 2. Additionally, each initial old agent is endowed with 1 unit of fiat currency.

- Consumer Problem
  - Young agents can trade with mid agents. Hence we can include a 1-period bond b with price Q, available only when young and mid.

- Initial old:  $\max_{c_1^{-1}} \ln c_1^{-1}$  s.t.  $c_1^{-1} \le w_3 + 1/P_1$
- Initial mid:  $\max_{c_1^0, c_2^0} \ln c_1^0 + \ln c_2^0$  s.t.
- $c_1^0 + M_2^0 / P_1 + Q_1 b_2^0 \le w_2$
- $c_2^0 \le w_3 + b_2^0 + M_2^0 / P_2$
- Other generations:
- $\max_{c_t^t, c_{t+1}^t, c_{t+2}^t, b_{t+1}^t, b_{t+2}^t, M_{t+1}^t, M_{t+2}^t} \ln c_t^t + \ln c_{t+1}^t + \ln c_{t+2}^t \text{ s.t.}$
- $c_t^t + M_{t+1}^t / P_t + Q_t b_{t+1}^t \le w_1$
- $\ c_{t+1}^t + M_{t+2}^t / P_{t+1} + Q_{t+1} b_{t+2}^t \le M_{t+1}^t / P_{t+1} + b_{t+1}^t + w_2$
- $c_{t+2}^t \le M_{t+2}^t / P_{t+2} + b_{t+2}^t + w_3$
- $-(c_t^t, c_{t+1}^t) \ge \mathbf{0}; \ (M_{t+1}^t, M_{t+2}^t) \ge \mathbf{0}; \ w_1/Q_t \ge b_{t+1}^t \ge -(M_{t+1}^t/P_{t+1} + w_2); \ (M_{t+1}^t/P_{t+1} + b_{t+1}^t + w_2)/Q_{t+1} \ge b_{t+2}^t \ge -(M_{t+2}^t/P_{t+2} + w_3)$
- Competitive Equilibrium
  - Allocation  $\{c_t^{t-2}, c_t^{t-1}, c_t^t, M_{t+1}^t, M_{t+2}^t, b_{t+1}^t\}$  and prices  $\{P_t, Q_t\}$  s.t. given prices, allocation solves consumer problem (agents optimize), and markets clear:
  - $c_t^t + c_t^{t-1} + c_t^{t-2} \le w_1 + w_2 + w_3$

$$-M_{t+1}^t + M_{t+1}^{t-1} = 1$$

$$-b_{t+1}^t + b_{t+1}^{t-1} = 0$$