Econ712 - Handout 4

1 Competitive equilibrium with social security

1.1 Environment

- Demographics: Discrete time, 2 period lived households, population growth n
- Technology:
	- Endowments (w_1, w_2) of non-storable consumption goods in youth and old age
	- Commitment technology that allows trade to take place across generations
- Prefences:
	- Initial old: $u(c_1^0)$
	- Generation t: $u(c_t^t) + \beta u(c_{t+1}^t)$
	- $-$ Assume $\lim_{c\to 0} u'(c) = \infty$
	- $-$ Assume $\beta u'(w_2) > u'(w_1)$
- Social security system: the young pay lumpsum taxes $\tau \in [0, w_1)$ and recieve transfers b when old

1.2 Equilibrium

- 1. Set up the household's optimization problem
- 2. What is the government's budget constraint?
- 3. Define a Competitive Equilibrium with Social Security

1.3 Characterization

- 1. Argue that autarky is the only equilibrium
- 2. Denote the lifetime utility under autarky by

$$
V(\tau) = u(w_1 - \tau) + \beta u(w_2 + \tau(1 + n))
$$

Starting from no social security system ($\tau = 0$), can a marginal increase in τ increase lifetime utility? Does the introduction of the social security system pareto improve over (strict) autarky?

3. What is the optimal social security tax and transfers?

2 Computing Life Cycle model

Consider a more general life cycle model with J period-lived agents. Newly born agents are endowed with no capital, but can subsequently save in capital which they can rent to firms at rate r . A worker of age j supplies labour $l_j \in [0, 1]$ and pays proportional security tax on her labour income $\tau we_j l_j$, where e_j is an age efficiency profile. For $j \geq J^R$, the worker retires $(l_j = 0)$ and receives pension benefits b.

Preferences are given by

$$
\sum_{j=1}^J \beta^{j-1} u(c_j, l_j) = \sum_{j=1}^J \beta^{j-1} \left(\frac{c_j^{\gamma} (1-l_j)^{1-\gamma}}{1-\sigma} \right)^{1-\sigma}
$$

We will go through the steps to compute a stationary equilibrium of this economy.

2.1 Firm block

The production tech is $Y = F(K, L) = K^{\alpha} L^{1-\alpha}$. Capital depreciates at δ . Labor and capital markets are perfectly competitive, so that $w = F_2(K, L)$ and $r = F_1(K, L) - \delta$

2.2 Household block

The problem of the household:

$$
\max \sum_{j=1}^{J} \beta^{j-1} \left(\frac{c_j^{\gamma} (1 - l_j)^{1 - \gamma}}{1 - \sigma} \right)^{1 - \sigma} \quad s.t.
$$

$$
c_j + k_{j+1} = (1 - \tau)we_j l_j + (1 + r)k_j \quad j = 1, ..., J^{R-1}
$$

$$
c_j + k_{j+1} = b + (1 + r)k_j \quad j = J^R, ..., J
$$

First note that the optimal l_j (if unconstrained) is given by

$$
l_j = \frac{\gamma (1 - \tau) e_j w - (1 - \gamma) [(1 + r) k_j - k_{j+1}]}{(1 - \tau) e_j w}
$$

We could solve this problem in a variety of ways:

- 1. Euler Equation approach:
	- (a) Guessing that $k_{j+1} \geq 0$ will not bind, the consumption Euler equation is

$$
u_1(c_j, l_j) = \beta u_1(c_{j+1}, l_{j+1}) [1+r]
$$

- (b) With the boundary conditions $k_1 = k_{J+1} = 0$, we can solve this either using the shooting method or by solving for the policy functions $c_j(k_j)$ and $k_{j+1}(k_j)$ (recall handout 2)
- 2. Value Function approach:

(a) Denote

$$
V_j(k) = \max_{c,l,k'} \left(\frac{c^{\gamma}(1-l)^{1-\gamma}}{1-\sigma}\right)^{1-\sigma} + \beta V_{j+1}(k') \quad s.t.
$$

$$
\begin{cases} c+k' = b + (1+r)k & j = J^R, \dots, J \\ c & \text{if } j = J^R, \dots, J \end{cases}
$$

 $c + k' = (1 - \tau)we_j l + (1 + r)k \quad j = 1, \ldots, J^{R-1}$

Then $V_1(0)$ is the optimal lifetime utility of the agent

- (b) Let $V_{J+1}(k) = 0$. Solve numerically for V_J , then V_{J-1} , and so on
- (c) A byproduct of this are the policy functions $c_j(k_j)$ and $k_{j+1}(k_j)$

2.3 Aggregation

Aggregate K supply and L supply can be found be summing up capital and labour supply across generations, with appropriate generation weights. With growth rate n, the relative size of each cohort is given by $\psi_{i+1} =$ $(1+n)^{-1}\psi_i$ with $\psi_1=\tilde{\psi}$. Then

$$
K = \sum_{j=1}^{J} \psi_j k_j
$$

$$
L = \sum_{j=1}^{J^{R}-1} \psi_j e_j l_j
$$

2.4 Gov block

The gov budget constraint is

$$
b = \frac{\tau w L}{\sum_{j=J^R}^J \psi_j}
$$

2.5 Equilibrium and Algorithm

Finding a stationary equilibrium entails finding allocations $\{c_j, l_j, k_{j+1}\}$, prices (r, w) , and policies (τ, b) such that

- 1. Household optimization is satisfied, given prices and policies
- 2. Firm's optimization satisfied
- 3. Markets clear: Capital supply $=$ Capital demand; Labour supply $=$ Labour demand; Goods supply $=$ Goods demand
- 4. Gov BC is satisfied

The algorithm is as follows: Given some τ :

- 1. Outer block Searching for prices: Guess w, r . Calculate the implied L and K supply, and b
	- (a) Inner block: Solve for household optimal allocations as described above

(b) Calculate aggregate L and K demand

2. If supply $=$ demand, stop. Else update guess of w, r

Alternatively, one could guess L and K supply, which gives an implied w, r .