Econ712 - Problem set 5^1

1 (Non-) Commitment in a black-box example with discrete choice sets

There is a continuum of identical households in the economy, able to choose some action $x \in \Xi$. Let the economy wide average (the aggregate) of these actions be X. The benevolent government chooses some action $y \in Y$. The payoff to a household is u(x, X, y) - a function of there own action, the aggregate action, and the government action. Let the optimal choice of households, as a function of aggregates, be $f(X, y) := \arg \max_{x \in \Xi} u(x, X, y)$.

Define a competitive equilibrium as actions (x, X, y) such that

- Given y, x, households optimize, i.e. x = f(X, y), and
- Household action is consistent with the aggregate, i.e. $\underbrace{f(X, y)}_{\text{HH action}} = \underbrace{X}_{\text{Aggregate action}}$.

Now for each y, define the aggregate action h(y) to satisfy f(h(y), y) = h(y). That is, (h(y), h(y), y) is a competitive equilibrium.

Let $\Xi = \{x_H, x_L\}, Y = \{y_H, y_L\}$. In the following, subscripts $i, j, k \in \{H, L\}$. For the one-period economy, with $x_i = X_i$, the payoffs $u(x_i, X_i, y_j)$ are given by the following table:

	x_L	x_H
y_L	12^{*}	25
y_H	0	24*

Table 1: One-period payoffs

Here the values $u(x_k, X_i, y_j)$ not reported are such that the outcomes with * are competitive equilibria. For example, $u(x_k, X_i, y_j) = -1$ for $k \neq i$ and i = j, and $u(x_k, X_i, y_j) = 30$ for $k \neq i$ and $i \neq j$. You should convince yourself that this is the case.

- Find the Ramsey outcome, that is when the government has commitment/moves first. Find the outcome when the government cannot commit/moves second (in pure strategies). We will refer to this case as the Nash equilibrium in pure strategies (NE).
- 2. Suppose the economy is repeated 5 times. Can the Ramsey outcome be supported in any period?

¹Thesen problems draw extensively from Ljungqvist and Sargent's Recursive Macroeconomic Theory

Now consider the expanded version of the previous economy. The payoffs $u(x_i, X_i, y_j)$ are given by the following table:

	x_{LL}	x_L	x_H
y_{LL}	2*	6	10
y_L	1	12*	25
y_H	-1	0	24*

Table 2: One-period payoffs

3. What are the NEs? Suppose the economy is repeated 3 times, with agents discounting future utilities by $\beta = 0.9$. Can the Ramsey outcome be supported in any period?

2 Static taxation

Let there be a unit measure of households with preferences over leisure, (private) consumption, and public goods (l, c, g), defined by the utility

 $u(l, c, g) = \ln l + \ln(\alpha + c) + \ln(\alpha + g), \quad \alpha \in (0, 0.5)$

Each household is endowed with 1 unit of time, which can be spent on leisure or labour. Production is linear in labour, i.e. the economy resource constraint is

 $\bar{l} + g + \bar{c} = 1$

where \bar{l}, \bar{c} are aggregate leisure and consumption. To provide the public good, the government can levy a flat proportional tax τ on labour. That is, $g = \tau(1 - l)$.

- 1. Set up and solve the Planner's problem.
- 2. Set up and solve for the Ramsey outcome. Hint: Gets quite messy feel free to use an equation solver to find roots
- 3. Set up and solve for the NE outcome.
- 4. Comment on the differences between the above 3 outcomes, and the reason as to why they are different.
- 5. Suppose the economy is repeated for infinite periods, with discount factor $\beta < 1$. For high enough β , can the Ramsey outcome be sustained?