Econ712 - PS7

Consider a two period economy with an unit measure of households. In period 1, households are endowed with w_1 units of consumption. In period 2, each household either receives endowment w_h with idiosyncratic probability π , or w_l with probability $1 - \pi$. Assume $w_1 > w_h > w_l$. There is a perfect savings technology (s units of goods saved today return s units of goods tomorrow). Households have log preferences over consumption and do not discount future consumption: $U(c_1, c_2) = \log c_1 + \log c_2$. Households maximize their expected utility.

1 Planner's problem

- 1. Setup the planner's problem, assuming the planner weighs everyone equally
- 2. Solve for the planner's optimal allocation. Are the allocation realization dependent, i.e. do they differ depending on households' period 2 endowments?

2 Complete markets

Assume that households can trade an asset q that pays out only if their second period endowment is w_h . That is, if they buy one unit of the asset at price p in period 1, they get one unit of goods in period 2 iff their endowment is w_h .

- 1. Setup and solve for the household problem
- 2. Define and solve for the competitive equilibrium
- 3. Compare the allocation you just found to the planner's allocation. Give intuition as to why they are similar/different
- 4. How would your answers to this part change if, instead of the asset only paying out if second period endowment is w_h , the asset only pays out if second period endowment is w_l ?

3 Incomplete markets

Assume that households cannot make contracts with each other.

- 1. Setup and solve for the household problem
- 2. Compare the allocation you just found to the planner's allocation. Give intuition as to why they are similar/different
- 3. Suppose there was a government that could impose taxes/transfers to agents at different rates. That is, they could impose taxes/transfers T_h, T_l to agents with w_h, w_l respectively. Can the planner's allocation be implemented in this environment?

4 Private information

Now suppose that the government in (3.3) above is the sole agent with access to the savings technology (hence they could also impose taxes/transfers T_1 in period 1). However, the government cannot observe which households have w_h and which have w_l , and have to rely on households' statement of their income. That is, if a household declare that they have w_h (w_l) in period 2, they get T_h (T_l).

- 1. Suppose that households are really morally strict and can only tell the truth. Can the planner's allocation be implemented in this environment? If so derive the taxes/transfers scheme
- 2. Suppose that households can lie (ie declare w_h even when they have w_l)
 - (a) What are the incentive compatibility constraints in this case? (Hint: In words, the constraint states that telling the truth gives higher utility than lying)
 - (b) Does scheme in (4.1) satisfy the incentive compatibility constraints?