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Here, we rigorously establish the connections between the sequence and recursive formulation of a general
dynamic optimization problem. Richard Bellman called these connections the Principle of Optimality.

The Principle of Optimality1

• Consider a sequence problem (SP) that takes the form:

sup
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt), t = 0, 1, 2, ...

x0 ∈ X given.

– X is the set of possible values for the state variable x.

– Γ : X → X is the feasible correspondence.

– A = {(x, y) ∈ X ×X, y ∈ Γ(x)} is the graph of Γ.

– F : A→ R is the one-period return function.

– β ≥ 0 is the stationary discount factor.

– Π(x0) = {{xt}∞t=0 : xt+1 ∈ Γ(xt), t = 0, 1, ...} is the set of plans that are feasible from x0.

• The corresponding functional equation (FE) takes the form:

v(x) = sup
y∈Γ(x)

[F (x, y) + βv(y)],∀x ∈ X

• The Principle of Optimality is that the solution v to (FE) evaluated at x0, gives the value of the
supremum in (SP) when the initial state in x0 and that a sequence {xt+1}∞t=0 attains the supremum
in (SP) if and only if

v(xt) = F (xt, xt+1) + βv(xt+1), t = 0, 1, 2, ... (1)

Assumption 1. Γ(x) is nonempty, for all x ∈ X.

Assumption 2. For all x0 ∈ X and x̃ ∈ Π(x0), limn→∞
∑n

t=0 β
tF (xt, xt+1) exists (it may be +∞ or −∞).

• Under Assumptions 1 and 2, we can define some notation around the solution to the (SP):

– For each n = 0, 1, ..., define un : Π(x0)→ R as the partial sum of discounted returns from period
0 through n from feasible plan x̃.

un(x̃) =

n∑
t=0

βtF (xt, xt+1).

– Define u : Π(x0) → R̄ = R ∪ {+∞,−∞} as the (infinite) sum of discounted returns from the
feasible plan x̃: u(x̃) = limn→∞ un(x̃).

– Define v∗ : X → R̄ as the supremum in (SP): v∗(x0) = supx̃∈Π(x0) u(x̃).2

1This handout draws heavily from section 4.1 of Stokey, Lucas, Prescott. Some simplification here; more details in SLP.
2In this handout, we limit our discussion to v∗(x0) ∈ R.
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• Properties of (unique) v∗ solution to (SP):

v∗(x0) ≥ u(x̃), for all x̃ ∈ Π(x0) (2)

For any ε > 0, v∗(x0) ≤ u(x̃) + ε, for some x̃ ∈ Π(x0) (3)

• Properties of (not necessarily unique) v solution to (FE):

v(x0) ≥ F (x0, y) + βv(y), for all y ∈ Γ(x0) (4)

For any ε > 0, v(x0) ≤ F (x0, y) + βv(y) + ε, for some y ∈ Γ(x0) (5)

Lemma 1. Let X,Γ, F, and β satisfy Assumption 2. Then for any x0 ∈ X and any (x0, x1, ...) = x̃ ∈ Π(x0),

u(x̃) = F (x0, x1) + βu(x̃′)

where x̃′ = (x1, x2, ...).

• Theorem 1 establishes that the solution to (SP) satisfies the (FE).

• Theorem 2 establishes a partial converse - requires a boundedness condition.

• Theorem 3 establishes that an optimal policy under (SP) also satisfies (1) for v = v∗.

• Theorem 4 establishes a partial converse - also requires a boundedness condition.

Theorem 1. Let X,Γ, F, and β satisfy Assumptions 1 and 2. Then the function v∗ satisfies (FE).

Proof strategy: We know v∗ satisfies (2) and (3) and we need to show (4) and (5) hold.

Theorem 2. Let X,Γ, F, and β satisfy Assumptions 1 and 2. If v is a solution to (FE) and satisfies

lim
n→∞

βnv(xn) = 0,∀(x0, x1, ...) ∈ Π(x0),∀x0 ∈ X, (6)

then v = v∗.

Proof strategy: We know v satisfies (4), (5), and (6) hold and we need to show (2) and (3) hold.

An immediate consequence of Theorem 2 is that the (FE) has at most one solution satisfying (6).

Theorem 3. Let X,Γ, F, and β satisfy Assumptions 1 and 2. Let x̃∗ ∈ Π(x0) be a feasible plan that attains
the supremum in (SP) for initial state x0. Then

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1), t = 0, 1, 2, ... (7)

Proof strategy: Establish (7) for t = 0 and apply induction to get for all t.

Theorem 4. Let X,Γ, F, and β satisfy Assumptions 1 and 2. Let x̃∗ ∈ π(x0) be a feasible plan from x0

satisfying (7) and with

lim sup
t→∞

βtv∗(x∗t ) ≤ 0 (8)

Then x̃∗ attains the supremum in (SP) for initial state x0.

Proof strategy: Show that the v∗(x0) ≤ u(x̃∗) and v∗(x0) ≥ u(x̃∗) =⇒ v∗(x0) = u(x̃∗)
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