ECON 712B: Handout 3

Instructor: Job Boerma TAs: Duong Dang and Alex von Hafften

Here, we rigorously establish the connections between the sequence and recursive formulation of a general dynamic optimization problem. Richard Bellman called these connections the Principle of Optimality.

The Principle of Optimality^{[1](#page-0-0)}

• Consider a sequence problem (SP) that takes the form:

$$
\sup_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})
$$

s.t. $x_{t+1} \in \Gamma(x_t), t = 0, 1, 2, ...$
 $x_0 \in X$ given.

- X is the set of possible values for the state variable x.
- $\Gamma: X \to X$ is the feasible correspondence.
- $A = \{(x, y) \in X \times X, y \in \Gamma(x)\}\$ is the graph of Γ.
- $F : A \to \mathbb{R}$ is the one-period return function.
- β > 0 is the stationary discount factor.
- $-I\prod(x_0) = \{\{x_t\}_{t=0}^{\infty} : x_{t+1} \in \Gamma(x_t), t = 0, 1, ...\}$ is the set of plans that are feasible from x_0 .
- The corresponding **functional equation (FE)** takes the form:

$$
v(x) = \sup_{y \in \Gamma(x)} [F(x, y) + \beta v(y)], \forall x \in X
$$

• The Principle of Optimality is that the solution v to (FE) evaluated at x_0 , gives the value of the supremum in (SP) when the initial state in x_0 and that a sequence $\{x_{t+1}\}_{t=0}^{\infty}$ attains the supremum in (SP) if and only if

$$
v(x_t) = F(x_t, x_{t+1}) + \beta v(x_{t+1}), t = 0, 1, 2, \dots
$$
\n(1)

Assumption 1. $\Gamma(x)$ is nonempty, for all $x \in X$.

Assumption 2. For all $x_0 \in X$ and $\tilde{x} \in \Pi(x_0)$, $\lim_{n \to \infty} \sum_{t=0}^n \beta^t F(x_t, x_{t+1})$ exists (it may be $+\infty$ or $-\infty$).

- Under Assumptions 1 and 2, we can define some notation around the solution to the (SP):
	- For each $n = 0, 1, ...,$ define $u_n : \Pi(x_0) \to \mathbb{R}$ as the partial sum of discounted returns from period 0 through *n* from feasible plan \tilde{x} .

$$
u_n(\tilde{x}) = \sum_{t=0}^n \beta^t F(x_t, x_{t+1}).
$$

– Define $u : \Pi(x_0) \to \bar{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$ as the (infinite) sum of discounted returns from the feasible plan $\tilde{x}: u(\tilde{x}) = \lim_{n \to \infty} u_n(\tilde{x})$.

- Define $v^*: X \to \bar{\mathbb{R}}$ as the supremum in (SP): $v^*(x_0) = \sup_{\tilde{x} \in \Pi(x_0)} u(\tilde{x})^2$ $v^*(x_0) = \sup_{\tilde{x} \in \Pi(x_0)} u(\tilde{x})^2$.

¹This handout draws heavily from section 4.1 of Stokey, Lucas, Prescott. Some simplification here; more details in SLP. ²In this handout, we limit our discussion to $v^*(x_0) \in \mathbb{R}$.

• Properties of (unique) v^* solution to (SP):

$$
v^*(x_0) \ge u(\tilde{x}), \text{ for all } \tilde{x} \in \Pi(x_0)
$$
 (2)

For any $\varepsilon > 0, v^*(x_0) \le u(\tilde{x}) + \varepsilon$, for some $\tilde{x} \in \Pi(x_0)$ (3)

• Properties of (not necessarily unique) v solution to (FE):

$$
v(x_0) \ge F(x_0, y) + \beta v(y), \text{ for all } y \in \Gamma(x_0)
$$
\n
$$
(4)
$$

For any
$$
\varepsilon > 0
$$
, $v(x_0) \le F(x_0, y) + \beta v(y) + \varepsilon$, for some $y \in \Gamma(x_0)$ (5)

Lemma 1. Let X, Γ, F , and β satisfy Assumption 2. Then for any $x_0 \in X$ and any $(x_0, x_1, ...) = \tilde{x} \in \Pi(x_0)$,

$$
u(\tilde{x}) = F(x_0, x_1) + \beta u(\tilde{x}')
$$

where $\tilde{x}' = (x_1, x_2, ...)$.

- Theorem 1 establishes that the solution to (SP) satisfies the (FE).
- Theorem 2 establishes a partial converse requires a boundedness condition.
- Theorem 3 establishes that an optimal policy under (SP) also satisfies [\(1\)](#page-0-2) for $v = v^*$.
- Theorem 4 establishes a partial converse also requires a boundedness condition.

Theorem 1. Let X, Γ, F , and β satisfy Assumptions 1 and 2. Then the function v^* satisfies (FE).

Proof strategy: We know v^* satisfies [\(2\)](#page-1-0) and [\(3\)](#page-1-1) and we need to show [\(4\)](#page-1-2) and [\(5\)](#page-1-3) hold.

Theorem 2. Let X, Γ, F , and β satisfy Assumptions 1 and 2. If v is a solution to (FE) and satisfies

$$
\lim_{n \to \infty} \beta^n v(x_n) = 0, \forall (x_0, x_1, \ldots) \in \Pi(x_0), \forall x_0 \in X,
$$
\n
$$
(6)
$$

then $v = v^*$.

Proof strategy: We know v satisfies (4) , (5) , and (6) hold and we need to show (2) and (3) hold.

An immediate consequence of Theorem 2 is that the (FE) has at most one solution satisfying [\(6\)](#page-1-4).

Theorem 3. Let X, Γ, F , and β satisfy Assumptions 1 and 2. Let $\tilde{x}^* \in \Pi(x_0)$ be a feasible plan that attains the supremum in (SP) for initial state x_0 . Then

$$
v^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta v^*(x_{t+1}^*), t = 0, 1, 2, \dots
$$
\n⁽⁷⁾

Proof strategy: Establish [\(7\)](#page-1-5) for $t = 0$ and apply induction to get for all t.

Theorem 4. Let X, Γ, F, and β satisfy Assumptions 1 and 2. Let $\tilde{x}^* \in \pi(x_0)$ be a feasible plan from x_0 satisfying ([7](#page-1-5)) and with

$$
\limsup_{t \to \infty} \beta^t v^*(x_t^*) \le 0 \tag{8}
$$

Then \tilde{x}^* attains the supremum in (SP) for initial state x_0 .

Proof strategy: Show that the $v^*(x_0) \le u(\tilde{x}^*)$ and $v^*(x_0) \ge u(\tilde{x}^*) \implies v^*(x_0) = u(\tilde{x}^*)$